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Vancomycin (Scheme 1) and teicoplanin are “last resort” antibi-
otics for the treatment of severe infections with enterococci
and methicillin-resistant Staphylococcus aureus (MRSA) strains.
However, over the past 15 years, vancomycin-resistant entero-
cocci (VRE) and intermediate resistant staphylococci (VISA)
have emerged. One approach to counter such resistance is the
generation of novel glycopeptides with altered antibiotic activ-
ity by combinatorial biosynthesis, that is, the reprogramming
of glycopeptide biosynthesis, a basic requirement for which is
the understanding of the process.[1]

The recent sequencing of glycopeptide biosynthesis gene
clusters has provided deeper insights into glycopeptide antibi-
otic biosynthesis.[2] Subsequent biosynthesis investigations
have been performed by heterologous expression and charac-
terization of enzymes, as well as gene inactivation combined
with the characterization of accumulated peptide intermedi-
ates.[1] The latter approach has mainly been performed with
balhimycin (Scheme 1) produced by Amycolatopsis balhimyci-
na,[3] formerly referred to as A. mediterranei.[4]

Glycopeptides are assembled from amino acid precursors by
the action of nonribosomal peptide synthetases (NRPS),[1] and
modified by the action of so-called “tailoring enzymes”. The
tailoring enzymes include three P450-dependent oxygenases
responsible for the cross linking of the aromatic side chains,[5–7]

glycosyl transferases for the attachment of carbohydrate resi-
dues and an N-methyl transferase[1] that introduces a methyl
group at the amino group of leucine. The three oxidative side-
chain cyclizations were assigned to three oxygenase genes
(oxyA/B/C). A sequence for the assembly of the glycopeptide
aglycon from linear peptide precursors was deduced as: 1) CD-
ring (OxyB), 2) DE-ring (OxyA) and 3) AB-ring (OxyC) coupling.[5]

Whether oxidative formation of AB, CD and DE rings occurs
before or after cleavage of the linear peptide from the NRPS
complex has not been determined.[1] Our previous observation
of considerable amounts of various linear and cyclized hexa-
and heptapeptides isolated from oxygenase mutants (oxyA/B/
C) cast doubt on whether side-chain-cyclized hexapeptides
were degradation products or were rather related to true bio-
synthesis intemediates.[5, 7] Here we report on the characteriza-
tion of metabolites accumulated from balhimycin biosynthesis
mutants inactivated in the central step of heptapeptide forma-
tion. These studies lead to the important conclusion that pep-
tide assembly on the NRPS appears to be intimately coupled
to the action of the oxygenases (OxyA/B/C).

Two A. balhimycina in-frame deletion mutants, described in
earlier work and both inactivated in different stages of hepta-

Scheme 1. Structural formulae of glycopeptide antibiotics balhimycin and
vancomycin.

[a] Dr. D. Bischoff, Dr. B. Bister, Dr. M. Bertazzo, G. J. Nicholson, S. Keller,
Prof. Dr. R. D. S�ssmuth
Institut f�r Organische Chemie der Universit�t T�bingen
Auf der Morgenstelle 18, 72076 T�bingen (Germany)
Fax: (+ 49) 7071-29-5560
E-mail : suessmuth@chem.tu-berlin.de

[b] Dr. V. Pfeifer, Dr. E. Stegmann, S. Pelzer, Prof. Dr. W. Wohlleben
Lehrstuhl f�r Mikrobiologie/Biotechnologie der Universit�t
Auf der Morgenstelle 28, 72076 T�bingen (Germany)
Fax: (+ 49) 7071-29-5979
E-mail : wolfgang.wohlleben@biotech.uni-tuebingen.de

[c] Prof. Dr. R. D. S�ssmuth
Present address: Technische Universit�t Berlin
Institut f�r Chemie, FG Organische Chemie
Straße des 17. Juni 124, 10623 Berlin (Germany)
Fax: (+ 49) 30-314-324783

Supporting information for this article is available on the WWW under
http ://www.chembiochem.org or from the author.

ChemBioChem 2005, 6, 267 –272 DOI: 10.1002/cbic.200400328 � 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 267



peptide formation, have been investigated.[9, 10] In the dpgA
mutant, a gene involved in the biosynthesis of 3,5-dihydroxy-
phenylglycine (7Dpg)[9] is inactivated and thus lacks the ability
to produce Dpg for delivery to the peptide synthetase, BpsC
(Figure 1 a). The bpsC mutant[10] has a deletion in the first con-
densation domain of BpsC that is responsible for condensation
of a hexapeptide with Dpg to yield the heptapeptide precursor
(Figure 1 b). In both cases, the antibiotically inactive culture fil-
trates were analyzed by HPLC-ESI-MS. This revealed chlorinated
peptide metabolites closely related to the putative balhimycin
biosynthesis intermediates. However, compared to the wild-
type strain, peptide production rates of these mutants were
significantly decreased (~100-fold). In order to obtain repre-
sentative metabolite-production profiles, fermentations were
scaled up to 80 (dpgA mutant) and 60 litres (bpsC mutant).

A previously described linear hexapeptide SP-969 (4)[7] from
culture filtrates of the dpgA mutant was found to be the main
metabolite. C-terminally truncated penta-, tetra-, tri- and di-
peptides 5, 6, 7 and 8 were detected in significantly lower
amounts, along with two bicyclic hexapeptides (DB-979/DB-
993; 2 a/b). In addition, two isobaric peptides, DB-1126A (1)
and DB-1126B (ESI-FTICR-MS: [M+H]+ = 1127.2960 and [M+H]+

= 1127.2959) with the molecular formula C53H52O16N8Cl2, were
isolated. The preparative HPLC yielded: 1 (~500 mg), DB-1126B

(~70 mg), 2 a/b (~50 mg) and 4 (~5 mg). Peptide sequences
were deduced from ESI-MS-MS experiments, in which struc-
tures of 4–8 could be assigned (Figure 2 a and Scheme 2). 2D
NMR experiments for DB-1126A (1) revealed a tricyclic glyco-
peptide aglycon with 7Dpg replaced by 4-hydroxyphenylgly-
cine (7Hpg; Scheme 2). This remarkable finding that a hepta-
peptide can be produced by this mutant is in contrast to the
unavailability of the amino acid 7Dpg in the mutant. The con-
figuration of 7Hpg (d or l) in DB-1126A could not be assigned.
Surprisingly, the newly formed AB-ring of compound 1 is ex-
panded to a 13-membered ring; this is a possible reason for
the lack of antibiotic activity against the indicator strain Bacil-
lus subtilis. The second derivative, DB-1126B, is assumed to
have a similar structure, but insufficient quantities were availa-
ble for detailed NMR studies.

Other important results came from investigation of culture
filtrates of the bpsC mutant, which were also found to contain
chlorinated metabolites. The linear hexapeptide 4 (SP-969;
~0.7 mg), the monocyclic hexapeptide 3 (DB-967; ~0.8 mg;
Scheme 2) and di- to pentapeptides 5–8 were detected by
HPLC-ESI-MS from the culture filtrates. In contrast to the dpgA
mutant, no bicyclic hexapeptide and no heptapeptide deriva-
tives were detected in extracts of the bpsC mutant by HPLC-
ESI-MS. As a consequence, except for compounds 4–8, both

Figure 1. Scheme of a part of the nonribosomal peptide synthesis of balhimycin (BpsB/C, modules M4–7): gene inactivations of a) the Dpg assembly (dpgA
mutant) and b) the heptapeptide condensation (bpsC mutant) are assigned. The heptapeptide precursor * is only present in the wild-type ; Hpg, 4-hydroxyphenylgly-
cine, b-Hty, b-hydroxytyrosine, Dpg, 3,5-dihydroxyphenylglycine, DpgA-D, Pgat proteins of the Dpg biosynthesis pathway ;[9] Domains: C, condensation; A, adenyla-
tion; T, thiolation ; E, epimerization; Te, thioesterase ; X, condensation domain of unknown function).
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mutants show markedly different peptide metabolite and side-
chain cyclization profiles. However, it was not clear whether
the truncated di- to pentapeptides 5–8 found in both of these
mutant strains were derived from proteolytic degradation of a
hexapeptide precursor. When the linear hexapeptide 4 and
heptapeptide SP-1134[7] were incubated with cell lysates from
the A. balhimycina bhp mutant (OP-696),[11] which is incapable
of producing balhimycin peptide metabolites, C-terminal
degradation of the heptapeptide to the hexapeptide 4 was
observed. However, the hexapeptide was not significantly

degraded. Vancomycin aglycon was also stable in these cell
extracts.

Semiquantitative HPLC-ESI-MS analyses of both dpgA and
bpsC mutants showed significantly higher amounts of tripep-
tide 7 and hexapeptides 4 compared to di-, tetra- and penta-
peptides 5, 6 and 8 (Figure 3). Interestingly, the tripeptide 7
and hexapeptide 4 correspond to the enzyme-free forms of
the products of NRPS BpsA and BpsB, respectively. The tripep-
tide 7, bound as a thioester to BpsA, should be transferred to
BpsB. Similarly, the thioester-bound form of hexapeptide 4

Figure 2. ESI-MS-MS spectra of peptides 5–8 from the A. balhimycina bpsC mutant. The same spectra were obtained for peptides 5–8 from the dpgA mutant. Pep-
tide sequences have been deduced as indicated from characteristic fragments (lower-case letters indicate fragment ions [F�H2O] +).
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should be transferred to the third NRPS, BpsC. According to
our previous results,[5, 7] the occurrence of significant amounts
of hexapeptide could only be explained by cellular degrada-
tion from heptapeptide precursors; this is confirmed by the
presence of a suitable protease. However, the degradation
characteristics of hexa- and heptapeptides with cell lysates

clearly differs from the peptidic
metabolite profiles found for
the dpgA and bpsC mutants. In
this context, N-terminally trun-
cated peptides or nonchlorinat-
ed precursor peptides were not
detected in extracts of the
dpgA and bpsC mutants. Appa-
rently, hydrolysis of the inter-
mediate thioesters could com-
pete with transfer between
peptide synthetases BpsA/B/C
to preferentially generate free
4 and 7.

A current model[1b] for the
biosynthesis of glycopeptide
antibiotics is based on the as-
sembly of a linear heptapep-
tide on the NRPS (BpsA/B/C)
followed by its cleavage from
the NRPS complex by a thioes-
terase (Te) domain located at
the C terminus of BpsC. Subse-
quent tailoring and decorating
steps occur, including side-
chain bridging by oxygenases
(OxyA/B/C), N-methylation and
glycosylation (Figure 4 a). How-
ever, the exceptional detection
of monocyclic hexapeptide 3
(Scheme 2) from the bpsC
mutant demands a reconsider-
ation of this model because CD
ring cyclization could occur
even when the hexapeptide is
linked as a thioester to BpsB.
This suggests that the hexa-
peptide linked as a thioester to
BpsB can act as a substrate for
OxyB.

Particularly for the bpsC
mutant, peptide intermediates
must have been released by
premature hydrolysis from pep-
tide synthetases BpsA/B. The
same is likely to be the case for
the dpgA mutant since Hpg is
usually not accepted as a natu-
ral substrate by BpsC.[8] Thus a
proper heptapeptide assembly
is slowed down, resulting in

premature hydrolysis of peptide intermediates. Similar observa-
tions of intermediates in the field of polyketide biosynthesis
support our findings.[12] Even more significantly, the complete
absence of monocyclic hexapeptide 3 in the dpgA mutant
clearly argues against a possible cytoplasmic cyclization of a
free peptide precursor.

Scheme 2. Structural formulae of peptide metabolites from A. balhimycina dpgA (1, 2 a/2 b, 4–8) and bpsC mutants
(3, 4–8).
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The experimental results suggest an alternative model for
vancomycin biosynthesis in which the first ring-closure reac-
tion of OxyB and possibly even all oxygenase reactions occur
on NRPS thiolester-bound peptides (Figure 4 b). Thus, forma-
tion of the CD ring (OxyB) should occur shortly before or

during the transfer of the hexapeptide from module 6 on BpsB
to module 7 on BpsC. Then the occurrence of only linear and
monocyclic hexapeptide in bpsC-mutant cultures can be ex-
plained by the absence of an essential interaction site between
OxyA and the NRPS complex due to the deletion in BpsC.

This model provides an explanation for previously unsuc-
cessful attempts to convert linear peptide precursors to vanco-
mycin aglycon with over-expressed oxygenases,[13] and shares
similarities with the proposed biosynthesis of b-hydroxytyro-
sine from a NRPS-bound tyrosine.[14] Furthermore, the present-
ed model stimulated experiments in which peptide carrier
domain-bound hexapeptide was successfully cyclized with
over-expressed oxygenase, OxyB.[15] The observation of the un-
usual substitution pattern in glycopeptide derivatives DB-1126A

(1) and DB-1126B indicates a certain substrate tolerance of
intact peptide synthetase, BpsC, and of the oxygenases to-
wards altered peptidic substrates. This will certainly stimulate
future attempts to vary glycopeptide structures by mutasyn-
thesis[8] or combinatorial biosynthesis or by a combination of
both.

Experimental Section

LC-MS experiments were performed on a Bruker Esquire 3000 +
(Bruker Daltonics, Bremen, Germany) coupled to an Agilent 1100
HPLC system (Agilent, Waldbronn, Germany). In order to obtain
semiquantitative data of peptide distribution patterns (4–8), ES-
ionisation yields were assumed to be approximately equal. FTICR-
ESI-MS spectra were recorded on an APEX II FTICR mass spectrome-
ter (4.7 T, Bruker Daltonics). NMR experiments were recorded on

an AMX 600 NMR spectrometer
(Bruker, Karlsruhe, Germany)
equipped with a 5 mm triple-reso-
nance probehead with z-gradients.
Further data on the isolation and
characterization of compounds (1,
2 a/b, 3, 4, 5–8) as well as peptide
degradation experiments are
given in the Supporting Informa-
tion.
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Figure 3. Comparison of relative peptide amounts of hexa- (4), penta- (5),
tetra- (6), tri- (7) and dipeptide (8) from A. balhimycina balhimycin biosynthesis
mutants a) bpsC, and b) dpgA, determined by HPLC-ESI-MS.

Figure 4. Models for the biosynthesis of vancomycin-type glycopeptide antibiotic balhimycin: a) NRPS independent
cyclizations by oxygenases OxyA/B/C. b) Proposed model : formation of the CD-ring on module 6 before or during
transfer to module 7. Dashed arrow: the formation of DE- and AB-rings is possibly also coupled to the NRPS. Green
squares symbolize the peptide backbone, red lines the AB, CD and DE rings, and blue hexagons the carbohydrate
residues of balhimycin.
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